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DiEM, Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy

Received 7 August 2006
Available online 6 August 2007
Abstract

Surface roughness may have a significant impact on microchannel performances, since at such a small scale it is nearly impossible to
obtain an actual smooth surface. The numerical approach allows a detailed description of the surface imperfections; thus, we can easily
separate roughness from other microscale effects. In this paper, roughness is modelled as a set of three-dimensional conical peaks dis-
tributed on the ideal smooth surfaces of a plane microchannel. Different peak heights and different peak arrangements are considered
at various Reynolds numbers. Periodicity conditions in both transverse and streamwise directions allow the reduction of the domain
to a small volume containing one or two peaks. The performances of parallel plate rough channels are compared with standard corre-
lation. Results show a remarkable effect of roughness on pressure drop, and a weaker one on the Nusselt number. The performances are
dependent on the geometrical details of the roughness elements. The impact of the uncertainty in the definition and measurement of the
hydraulic diameter is also discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The interest in heat transfer and pressure drop in micro-
channels has been constantly growing over the past decade,
as shown by the extended reviews reported in Refs. [1,2].
However, although a large pool of experimental data is
available, we do not yet have a complete comprehension
of all the aspects of the microscale flow behaviour. This
is partially due to the fact that raw experimental data
may even be somehow misleading, in the sense that the glo-
bal performance parameters are strongly influenced by a
number of competing effects and different uncertainties,
whose relative importance is very difficult to estimate. Fur-
thermore, July et al. [3] showed that the experimental
uncertainty, dominated by the error in diameter measure-
ments, may induce up to a 10% difference in the evaluation
of the Poiseuille number for smooth fused silica tubes and
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up to 20% for stainless steel tubes. Thus, experimental data
are only useful to prove deviations from standard theory
above such magnitudes. In addition to the error in diame-
ter measurements, these discrepancies can be ascribed to a
variety of causes, including compressibility effects in gases,
viscous dissipation, variation of thermophysical properties
with temperature, entrance and exit losses, conjugate heat
transfer and surface roughness. This yields some scattering
of experimental data. In fact, whereas most literature refer-
ences report heat fluxes higher or equal to those predicted
by the corresponding macroscale correlations (see, as an
example, [4]), one can even find some quotations of the
opposite effect [5].

The computational approach can, thus, be useful to
understand the basic physics of the problem, since one
can easily select or neglect any of the relevant effects (such
as viscous dissipation or surface roughness), and analyse
every single facet of the problem.

Here, we will focus on the estimation of the roughness
effect. At the microscale level it is nearly impossible to
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Nomenclature

A channel cross-sectional area
b roughness cone base radius
Dh hydraulic diameter
e roughness element height
F friction factor Eq. (9)
H channel height
k thermal conductivity
L domain length in streamwise direction
_m mass flow rate
Nu average Nusselt number (Eq. (10))
NuL local Nusselt number (Eq. (12))
P wetted perimeter
p pressure
~p periodic component of pressure
q heat flow rate
q00 specific heat flow rate
Re Reynolds number (Eq. (8))
S roughness element pitch
S* transverse obstruction factor (Eq. (7))
Srough maximum transverse area of a roughness element
Stot total transverse area in the roughness layer

(Stot = s � e)

T dimensionless temperature (Eq. (5))
t temperature
tb bulk temperature
tw wall temperature
u streamwise velocity component
v velocity vector
x streamwise coordinate
Y transverse coordinate
z vertical coordinate (normal to the channel wall)

Greek symbols

a pressure gradient
c slope parameter c = b/e
e relative roughness e ¼ e=D0

h

Dt log mean temperature
k pitch ratio k = e/s
l dynamic viscosity
q density

Superscripts

– average value
0 referring to the ideal smooth surface
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obtain an actually smooth surface, and for tube diameters
around 100 lm the typical relative roughness (ratio
between the geometrical imperfection height and the
hydraulic diameter) ranges from 0.5% for very smooth sil-
ica tubes to 5–6% for stainless steel tubes. This yields diffi-
culties in the diameter evaluation and affects the near-wall
flow behaviour. If the roughness is large enough, local
recirculation areas may be expected, with a significant
impact on heat transfer. In fact, several authors ascribe
to roughness some of the discrepancies between microscale
tube performances and the predictions of macroscale well
established correlations [6].

A literature survey of roughness effects on microscale
tube performances can be found in Ref. [6]. While measure-
ments of friction coefficient for water flow in smooth glass
and silicon tubes are in good agreement with standard mac-
roscale correlations, discrepancies arise for rough ducts at
Re > 600 [7]. An increase in Poiseuille number has been
observed for R114 liquid flow in 130 lm stainless steel
tubes ([8], relative roughness 2.65%). Turner et al. [10], ana-
lyzing laminar gaseous flows in smooth and rough chan-
nels, found, in low compressibility and low rarefaction
regimes, an increase of the friction factor, but lower than
experimental uncertainty (6–10%). Furthermore, it is
widely accepted that roughness, even at low roughness val-
ues, determines an early transition to turbulent flow.

While most literature references on the role of high sur-
face roughness in microscale laminar regime [1,7–9,11]
agree in ascribing to it an increase of the friction factor
with respect to the conventional theory, although the
magnitude of such effect is often comparable with the
experimental uncertainty, a much higher uncertainty arises
when the effects of surface roughness on heat transfer are
considered. According to Wu and Little [12] a high relative
roughness of the walls increases the convective heat trans-
fer because of the multiple regeneration of the thermal
boundary layer. On the other hand Qu et al. [13], compar-
ing their experimental results with the numerical ones
obtained by solving a conjugate heat transfer problem, jus-
tify the measured lower Nusselt number with the surface
roughness effects. Debray et al. [14] explain values of the
Nusselt number lower than those predicted by the conven-
tional theory by considering the non-uniformity of heat
flux at the walls.

A numerical evaluation of the effect of 2D roughness on
heat transfer and pressure losses was presented in Ref. [15].
The results showed a more significant effect of roughness
on pressure drop, rather than on heat transfer. Further-
more, the tests on triangular and rectangular roughness
obstacles demonstrated an appreciable effect of the geomet-
rical details on the channel performances. The same numer-
ical prediction has been compared in Ref. [16] with some
simplified global roughness models proposed by Mala
and Li [17] and Kleinstreuer and Koo [18]. Koo and Kle-
instreuer [19] extended their analysis to heat transfer eval-
uation, confirming most of the observation of Ref. [15].
A significant effect of the roughness element shape on
microchannel pressure drop was also confirmed by Rawool
et al. in Ref. [20], where triangular, square and trapezoidal
ridges in a serpentine duct were numerically investigated. A
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numerical analysis of the effect of three-dimensional rough-
ness, modelled via a regular periodic pattern of identical
rectangular prisms, was presented in [21], but heat transfer
was not considered. Furthermore, the actual microscope
images of rough surfaces showed a local roughness geome-
try much more similar to a collection of cones and pyra-
mids, rather than a serie of square blocks.

Thus, in the present paper we extend the analysis of Ref.
[15] to the three-dimensional case, considering conically
shaped roughness and comparing different configurations
and flow conditions. Both Nusselt and Poiseuille numbers
are selected as relevant performance parameters. Since
our main aim is to isolate this single aspect of the problem,
we neglect any other possible cause of departure from mac-
roscale flow behaviour. Thus, viscous dissipation is not
taken into account, and the equations for the laminar flow
of an incompressible constant properties fluid are solved.
2. Numerical method

The Navier–Stokes equations which governs the incom-
pressible, constant property laminar flow are here solved
using a finite element procedure based on a fractional step
approach. The technique is based on the stabilized projec-
tion algorithm presented in Ref. [22], and is similar to the
one described by Comini and Del Giudice [23]. At each
time step a tentative pressure is assumed equal to that
obtained at the end of the previous time step, and the
momentum equations are solved for the corresponding ten-
tative velocity field. Afterwards, continuity is enforced to
find pressure corrections leading to velocity corrections
that project the tentative velocity field onto a divergence-
free space. Once the velocity field has been found, the
energy equation can be solved before moving to the next
step. Steady state solutions are obtained from pseudo-tran-
sient simulations using a fully implicit time integration
scheme. The numerical procedure has been validated in
the past for a variety of flow conditions by successfully
solving typical benchmarks problems [22,24].

Although roughness peaks and valleys are obviously
characterised by a partially random distribution, we can
assume that this is almost repetitive along the channel.
Thus, we consider a relatively short channel segment and
impose periodic boundary conditions at the inlet and outlet
sections, according to our assumption of fully-developed
flow. The wall temperature is assumed to be uniform and
constant.

In a periodically fully-developed flow the pressure p can
be expressed as the sum of a linear term, accounting for the
overall pressure gradient, and a residual term, which
behaves in a periodic manner [24,25]. Thus, if x denotes
the streamwise direction, we have

pðx; y; zÞ ¼ �axþ ~pðx; y; zÞ ð1Þ

where the constant a is the overall pressure gradient and ~p
the periodic residual term. Thus, the periodicity between
the inlet (x = 0) and outlet (x = L) sections, leads to the
conditions

~pðL; y; zÞ ¼ ~pð0; y; zÞ ð2Þ
vðL; y; zÞ ¼ vð0; y; zÞ ð3Þ

Since the conditions expressed by Eq. (3) do not allow the
specification of any inflow velocities, the pressure gradient
a must be iteratively adjusted until the desired value of the
average velocity

�u ¼ 1

A

Z
A

udy dz ð4Þ

is reached [24,25]. In Eq. (4), A is the channel cross-section.
Because of the assumption of uniform constant wall tem-
perature and thermally fully-developed flow, in the solu-
tion of the energy equation we can assume that the
distribution of the dimensionless temperature

T ¼ t � tw

tb � tw

ð5Þ

repeats identically from module to module [24]. In the
above equation, tb is the bulk temperature and tw is the im-
posed wall temperature. The periodicity condition, thus,
implies [24]

tðL; y; zÞ � tw

tbðLÞ � tw

¼ tð0; y; zÞ � tw

tbð0Þ � tw

ð6Þ
3. Geometry and computational domain

Surface roughness is explicitly modelled through the
superimposition of conical peaks on the ideal smooth sur-
faces of a plane channel. Real roughness may assume the
most different shapes, depending on the material properties
and the manufacturing process, ranging from regular
grooves created during micro-machining processes to iso-
lated, random pyramid peaks from etching procedures
[26]. Square obstacles have frequently been used in numer-
ical simulations [15,21]. However, some samples of micro-
scope reconstructions or measurements of actual surfaces,
as seen in Refs. [14,27,29], seem to suggest that pyramid
or conical imperfection could represent a better description
of some rough surfaces. Here, regular distributions of con-
ical peaks have been chosen. In Ref. [15] it is shown that
this may yield somewhat different results, with respect to
a random distribution, but the main flow features and
physical mechanisms can still be captured. On the other
hand, the assumption of geometrical and flow periodicities
in uniform configurations allows huge savings in terms of
computational domain size, and a consequent reduction
of CPU time. Thus, regular distributions of either in-line
or staggered peaks were considered. Typical geometries
are shown in Fig. 1a (in-line) and b (staggered).

Fig. 2 illustrates the meaning of the symbols used to
describe the geometry. The most significant parameters
are the relative roughness e ¼ e=D0

h, where D0
h ¼ 2H is the

hydraulic diameter (evaluated with reference to the ideal
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Fig. 1. In-line (a) and staggered (b) peak geometry.

Fig. 2. Geometrical parameters.
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smooth surface), the cone slope parameter c = b/e and the
pitch ratio k = e/s. If s > b, we only have peaks over a flat
surface; for s < b, the peaks intersect and we get a more
complex pattern of peaks and valley.

Furthermore, we define the transverse area ratio

S� ¼ Srough

Stot

ð7Þ

between the transverse area Srough occupied by the peak
and the total area Stot = e � s ideally available in the rough-
ness layer.

Values of e ranging from 0.05% to 2.65% are considered.
Such values may be representative of actual roughness for
microtubes in the diameter range from 50 lm to 150 lm.
The range of the slope parameter c range is chosen between
0.5 and 1.0 (i.e. cone angles between 45� and around 60�),
while the pitch ratio varies from k = 0.2 to a tightly packed
configuration characterized by k = 0.6.

The computational domains consist of a portion of the
channel, associated to a single roughness peak, from the
lower endwall to the symmetry plane. These domains are
discretized using structured, stretched body fitted meshes
of 33 � 33 � 47 nodes and 47,104 hexaedral elements.
The minimum vertical spacing in the near-wall region (on
both the baseline plane and the cone surface) is of the order
of 1/20 of the roughness element height, and increases
exponentially towards the channel symmetry midplane. A
grid independency test for the most critical conditions,
i.e., maximum roughness height, minimum peak spacing
and maximum Reynolds number, showed a variation of
0.43% on Nusselt and 0.27% on Poiseuille values adopting
a 50% finer grid (47 � 47 � 73 nodes). The same grid den-
sity and topology was then used for all of the considered
geometries and flow condition.

No-slip and constant temperature boundary conditions
are applied to the solid walls, symmetry conditions are
applied to the boundary corresponding to the midspan hor-
izontal symmetry plane, and periodic conditions expressed
by Eqs. (2), (3) and (6) are applied to the boundaries nor-
mal to the flow direction. Finally, to avoid the suppression
of possible unsteady oscillations of the wakes generated by
the peaks, periodicity is also imposed on the lateral bound-
aries parallel to the main flow direction.
4. Result and discussion

We restrict our analysis to single phase fully developed
flows of liquids. R114 (Pr = 4.77) is chosen as the working
fluid, since refrigerant fluids have often been considered in
experimental studies [1,8] and previous computations
[15,16].

We present global performances in terms of average
Nusselt number Nu, friction factor f and Poiseuille number
f � Re. Following Ref. [20], the non-dimensional parameters
are defined with respect to the smooth wall hydraulic diam-
eter D0

h ¼ 2H . This is not the only possible choice, as will be
discussed in a later section.

Thus, we adopt the following definition of Re, f and of
the average Nusselt number Nu in the periodic cell:

Re ¼ q�uD0
h

l
¼ 2

_m
sl

ð8Þ

f ¼ 2
Dp

Lq�u2
D0

h ð9Þ

Nu ¼ q

S0Dt

D0
h

k
ð10Þ

where �u is the average velocity on a channel section

�u ¼ 2 _m

qD0
hs

ð11Þ

q is the heat flow rate, S0 = s2 is the ideal projected smooth
wall area, and Dt is the log mean temperature difference:

Dt ¼ ½tw � tbðLÞ� � ½tw � tbð0Þ�
ln tw�tbðLÞ

tw�tbð0Þ

h i ð12Þ

Finally, the local Nusselt number may be defined as

NuL ¼
q00

tw � tbðxÞ
D0

h

k
ð13Þ

where q00 is the local specific heat flow rate.
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4.1. Flow structures and pressure drop

With respect to the two-dimensional surface roughness
considered in Refs. [15,16], the present three-dimensional
geometry offers a much weaker obstruction to the flow,
since the fluid can easily circumvent the peaks. Thus, we
should probably expect, for a given value of e, a relatively
weak effect. This is confirmed by the predicted flow struc-
tures. In fact, in most cases, no major recirculation takes
place at the back of the peaks, at least as long as s > 2b.
As an example, with the in-line configuration with c = 2/3
and S* = 0.4, recirculation appears only at Re = 1500, as
shown in Fig. 3. Furthermore, this recirculation zone is
limited to a narrow region at the back of the obstacle
and is basically generated by the interaction of the horse-
shoe vortices originating in front of the peak. If the peak
spacing is reduced to s < 2b, each peak interferes with the
neighbouring ones. The resulting geometry, as shown in
Fig. 4, presents some cavities which induce stronger
recirculations.

As long as we have small recirculations, the Poiseuille
number is nearly independent of Re. In fact, as shown in
X

Y

Z
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Z

NuL

Fig. 3. Streamline patterns, c = 2/3, k = 0.4, Re = 15
Fig. 5 for c = 1 (45� conical peak), we have a slight increase
of the Poiseuille number with Re only for the highest value
of the Reynolds number and the tightest peak distribution
(k = 0.4). Nevertheless, Fig. 5 shows that the surface
roughness causes a generalized increase of the Poiseuille
number (up to 16% for e = 2.65%) with respect to the stan-
dard laminar macroscale value of 96. We can note that the
pressure drop penalty is not proportional to the increment
of the wet surface. For example, with e = 2.65%, c = 1,
k = 0.4, we have a Poiseuille number increment of about
16%, for a variation in wet surface of 21% with respect
to the smooth wall. Furthermore, since we do not have sig-
nificant wakes behind the peaks, the interaction between
the obstructions and the wakes is small. Thus, the results
for in-line and staggered peaks, plotted in Fig. 6, are nearly
coincident, with a maximum increase of the Poiseuille num-
ber in the staggered configuration of less than 1% with
respect to the values obtained with the in-line arrangement.
Fig. 6 shows that the different peak arrangement has little
impact also on the heat transfer performance. Therefore,
since we have small interferences between peaks, we expect
a similar behaviour also for randomly distributed peaks.
17 19 21 22 24 25 27 28 30

00. Solid wall coloured by local Nusselt values.
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Fig. 4. Streamline patterns, c = 0.5, k = 0.6, Re = 1500. Solid wall coloured by local Nusselt values.
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The effect of the roughness height is shown in Fig. 7. We
notice that the Poiseuille number increment is nearly linear
with e, again suggesting the absence of separations and of
complex flow patterns. However, the slope of the curve
of f � Re vs. e increases with the reduction of the peak spac-
ing s (i.e. with the increase of k).

In the roughness model of Kleinstreuer and Koo [18,19]
the wall roughness is modeled with an equivalent porous
layer. Thus, it seems interesting to establish a relationship
between the channel performance variations and some geo-
metrical parameter related to the flow obstruction. How-
ever, it is not easy to find a single representative
geometrical parameter. As an example, in Fig. 8, f � Re is
plotted as a function of the peak slope c, with the obstruc-
tion factor S* as a parameter. We notice that even with the
same geometrical obstruction the Poiseuille number is
higher for steeper peaks (lower values of c).
4.2. Heat transfer

Computed Nusselt numbers show a less significant influ-
ence of roughness, with respect to that on the Poiseuille
number. The same trend was also verified in the 2D simu-
lations [15]. However, Fig. 9 shows that, for the same con-
figuration of Fig. 5, an heat transfer enhancement up to
3.9% can be observed. The effect of the roughness height
is illustrated in Fig. 10, and the combined influence of
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obstruction factor and peak slope is shown in Fig. 11. In
Fig. 10, the slope of the Nu–e curve increases for higher val-
ues of e, and, as expected, closely packed, steep peak
arrangements yield the maximum increase in the Nusselt
number, up to 7.7% with reference to the values of the
smooth channel (Fig. 11).

Again, the absence of flow separations and vortex shed-
ding yields quite regular flow patterns and local Nusselt
number distributions on the peak surface, as shown in
Fig. 12. The shape of such contours at low Re is symmetric
around the cone axis, and nearly exactly mimics the con-
tours of the wall height. This suggest a symmetric creeping
flow, while the increase of the average velocity (and thus of
Nu) is simply related to the flow passage reduction due to
the obstruction. At higher values of Re, the heat transfer
coefficient is higher on the peak front and lower on its
back, due to the thinner boundary layer in the accelerating
frontal region and the thicker one in the deceleration zone
behind the obstruction.

The heat transfer coefficient is computed with reference to
the ideal smooth surface. However, it is worth noting that (in
analogy to what observed for pressure drop) the increase of
the heat transfer rate is smaller than the increase of the
actual surface between the smooth and rough configura-
tions. As an example, for Re = 1500, e = 2.65%, staggered
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configuration, k = 0.4 and c = 1, we have an increase in the
actual wet area of about 20%, with a modest heat transfer
enhancement of 3.9%. The small increment of Nu is due to
the small area experiencing a significant heat transfer
enhancement (the tip of the cones) compared to the larger
low velocity area in the valleys between adjacent peaks.
The same behaviour was detected for axisymmetric micro-
tube flows in Ref. [15], and can also be verified for 2D rough-
ness consisting of triangular ribs in the transverse direction
as those considered in [16,20]. For example, in Fig. 13, for
the geometry corresponding to k = 0.2 and e = 2.65%, the
effect of 2D and 3D roughness on Nu and f � Re is shown.
In the 2D configuration both Nu and f � Re are larger than
in the 3D case, but, since the blockage is much higher, recir-
culation appears even at relatively low Re number. Thus, the
penalization imposed by the valley overcomes the enhance-
ment at the rib tops, and the global effect is a reduction of Nu

with an increase of Re. Furthermore, the comparisons
reported in Fig. 13 show that, for a given relative roughness
e, different roughness shapes, namely 2D saw-tooth ridges
rather than 3D conical peaks, yield a two or three times
stronger effect on both pressure drop and heat transfer rate.
4.3. Choice of the reference length

The choice of the reference length for a rough channel is
not obvious. In the previous sections, we chose the smooth
channel hydraulic diameter D0
h ¼ 2H , as suggested in Ref.

[20]. As an alternative, some literature references suggest
the evaluation of the microchannel height with reference
to a simple arithmetic average between peak heights and
valleys, i.e.

Dh ¼ 2ðH � eÞ ð14Þ
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but this assumption does not seem adequate for complex
3D situations, since it does not take into account the vari-
ation in shape and spacing of the peaks.

Since, from a practical point of view, the value of H, and
thus that of Dh, for an actual channel comes from an aver-
age of several measuring points, a suitable value may be
defined as

Dh ¼ 2ðH � �eÞ ð15Þ

where the surface average roughness height �e is easily com-
puted (as long as s > 2b) as the ratio between the conical
peak volume pb2e/3 and the projected area of the periodic
element S0 = s2:

�e ¼ p
3

e � b
s

� �2

¼ p
3

e � ðkcÞ2 ð16Þ

Another option is represented by a reasonable extension of
the usual definition of hydraulic diameter (Dh = 4A/P,
where A is the area of the cross-section and P is the wetted
perimeter) to the present 3D configuration:

Dh ¼
4 � V

S
ð17Þ

where V is the volume of the computational domain and S

the actual wet wall surface (including the peaks). Schmitt
and Kandlikar [28] proposed, and supported with experi-
mental data for two-dimensional saw-tooth obstruction,
the use of the constrained diameter, i.e. the minimum one:

Dh ¼ 2ðH � 2eÞ ð18Þ

Finally, an alternative choice may derive from the combi-
nation of the approaches followed in Eqs. (15) and (18).
In particular, a reasonable value may be given by the aver-
age diameter in the restricted transverse section (i.e. in the
cross-section including the peaks tips). With conical
shapes, this yields

Dh ¼ 2 H � 2
be
s

� �
ð19Þ

while for saw-tooth obstruction Kandlikar definition is
recovered.

For a given mass flow rate in a plane channel, any
option will yield the same Reynolds number Eq. (8). In
fact, the choice of a smaller reference hydraulic diameter
Table 1
Results for different choices of the hydraulic diameter; apex 0 refers to smoot

k = 0.4

Nu/Nu0 f � R
Dh ¼ D0

h 1.039 1.15
Eq. (14): Dh ¼ 2ðH � �eÞ 1.011 1.06
Eq. (15): Dh ¼ 2ðH � �eÞ 1.034 1.14
Eq. (17): Dh = 4 � V/S 0.849 0.65
Eq. (18): Dh = 2(H � 2e) 0.984 0.98
Eq. (19): Dh ¼ 2H 1� 2 be

s

� �
1.017 1.08

Re = 1500, c = 1, e = 2.65%, in-line arrangement.
will imply an increase in the average inlet velocity, since
the mass flow rate must remain constant. On the other
hand, according to Eqs. (10) and (9) the Nusselt number
will scale with Dh Eq. (10) and the friction factor f, as well
as the Poiseuille number, will scale with D3

h. Thus, the esti-
mate of the actual magnitude of the roughness effect is
strongly dependent on the choice of Dh.

In Table 1 we report an example of the channel perfor-
mances evaluated with different choices of the hydraulic
diameter. The discrepancies among different approaches
are quite significant, and this might explain some of the well
known scattering in microchannel experimental data. In
fact, even a small uncertainty in the diameter measurement
may yield quantitatively and qualitatively different results.

The choice of the surface averaging, as in Eq. (15), may
be the best option from a physical point of view. However,
Dh could be difficult to evaluate in the case of roughness
characterized by a random distribution of peak heights
and spacings. Therefore, a good compromise could be the
choice of Eq. (18), Dh = 2(H � e), which is easier to evalu-
ate from manufacturers data and yields results in reason-
able agreement with those obtained with Eq. (15).

Table 1 shows the value of Nusselt and Poiseuille num-
bers evaluated from the actual computed heat fluxes and
pressure drops, using each of the above mentioned different
definitions of the hydraulic diameter; the values are non-
dimensionalized with the reference values Nu0 = 7.54 and
f0 � Re = 96. Thus, if Nu/Nu0, for a given definition of Dh

is less than 1, the actual heat transfer rate is lower than that
predicted using the same hydraulic diameter and the stan-
dard asymptotic value Nu0 = 7.54. It is worth noticing that
the choice of the restricted diameter given by Eq. (18), as
suggested in Ref. [28], although, obviously, cannot capture
the significant effect of the different geometrical details
demonstrated in Figs. 7, 8, 10 and 11, gives a good approx-
imation (as could be expected) of the behaviour of the clo-
sely packed configurations. In fact, Table 1 shows that, for
k = 0.4, both the Poiseuille and the Nusselt numbers com-
puted with such a diameter agree within 2% with the stan-
dard smooth channel values. Thus, the use of the standard
Poiseuille and Nusselt number values for smooth channels,
having defined Dh as in Eq. (18), would give only a slight
overestimation of both pressure drop and heat transfer
with respect to the actual computed values, at least for
h channel values

k = 0.2

e = f 0 � Re Nu/Nu0 f � Re = f v0 � Re

8 1.012 1.055
8 0.985 0.973
3 1.003 1.027
7 0.823 0.567
3 0.959 0.896
7 1.001 1.024
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closely packed configurations (k = 0.4). On the other hand,
for the highest peak spacing (k = 0.2), the same assump-
tions would yield a significant overestimation of both
Poiseuille and Nusselt numbers. However, its alternative
formulation defined by Eq. (19) gives values of Nu and
f � Re in very good agreement with those predicted by the
classical theory for both geometries (k = 0.2 and 0.4).
4.4. Correlation of present results

It is interesting to derive a correlation for the present
computed data. Although its accuracy would be limited
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Fig. 14. Correlation validations: (a) Poiseuille number calculated from
Eq. (20) vs. computed value; (b) Nusselt number calculated from Eq. (21)
vs. computed value. Hydraulic diameter as in Eq. (19). Solid line: ±1%
confidence band; dotted line: ±2% confidence band.
to the range of geometrical parameters assumed in the pre-
viously described computations, it can help identify the
most significant parameters responsible for the deviation
from smooth wall predictions, as well as give some hints
useful to guess the performances in case of different rough-
ness shapes.

As suggested by the analysis of Table 1, we use the def-
inition of the hydraulic diameter given by Eq. (19). Fur-
thermore, from Fig. 7, it is clear that, for a given shape
of the peaks, the effect of the roughness height e on the
Poiseuille number is essentially linear, and we have a simi-
lar dependence from parameter k. On the other hand, the
influence of the angle c, for a given average hydraulic diam-
eter, should disappear for c ?1 (i.e. smooth channel) and
should be maximum for c = 0, i.e. for pin-like steep
obstacles.

On the basis of these considerations, the following cor-
relations were derived:

fRe ¼ ðfReÞ0ð1þ 20ke � expð�cÞÞ ð20Þ
Nu ¼ Nu0ð1þ 20ke � expð�cÞÞ ð21Þ

It is worth noticing that the non-dimensional parameter
ke = be/sH is proportional the ratio between the obstruc-
tion maximum cross-section be and the whole channel
cross-section sH. In Fig. 14, the predictions from Eqs.
(20) and (21) are compared with the results of the numeri-
cal simulations. All of the data fall within the ±2% error
band, demonstrating that the two parameters ke and c
can actually be chosen as the most representative for sur-
face roughness description.
5. Conclusions

The effects of three-dimensional surface roughness on
heat transfer and pressure drop in microchannel flows have
been studied numerically. Roughness has been modelled as
a set of three-dimensional conical peaks distributed on the
ideal smooth surfaces of a plane microchannel The present
results show that surface roughness may significantly affect
the pressure drop through a microchannel. An increase in
Poiseuille number, based on the smooth microchannel
hydraulic diameter, up to 16% was obtained for
e = 2.65%. On the other hand, the increase of the Nusselt
number is much smaller, due to the presence of low velocity
regions behind the peaks where the heat transfer rate is
close to that of pure conduction. This confirms the results
of previous two-dimensional simulations. However, the
actual microchannel performances are also dependent on
the geometrical details and, in particular, on the steepness
of the obstructions, although the use of a properly defined
hydraulic diameter can reduce the discrepancy with respect
to macroscale correlations.

A correlation has also been proposed to fit the present
numerical data. Although such correlation cannot be
automatically extended to different geometries, it shows
that the most significant roughness geometrical parameters
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are the obstruction relative cross-section and the roughness
element slope.

The numerical approach has proven to be well suited for
the evaluation of phenomena which are both highly geom-
etry dependent and weak enough to be within the range of
experimental uncertainty.
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